238 lines
6.7 KiB
TypeScript
238 lines
6.7 KiB
TypeScript
import {
|
|
ignoredFiles,
|
|
ignoredFolders,
|
|
} from "@/components/editor/AIChat/lib/ignored-paths"
|
|
import { templateConfigs } from "@/lib/templates"
|
|
import { TIERS } from "@/lib/tiers"
|
|
import { TFile, TFolder } from "@/lib/types"
|
|
import { Anthropic } from "@anthropic-ai/sdk"
|
|
import { currentUser } from "@clerk/nextjs"
|
|
|
|
const anthropic = new Anthropic({
|
|
apiKey: process.env.ANTHROPIC_API_KEY!,
|
|
})
|
|
|
|
// Format file structure for context
|
|
function formatFileStructure(
|
|
items: (TFile | TFolder)[] | undefined,
|
|
prefix = ""
|
|
): string {
|
|
if (!items || !Array.isArray(items)) {
|
|
return "No files available"
|
|
}
|
|
|
|
// Sort items to show folders first, then files
|
|
const sortedItems = [...items].sort((a, b) => {
|
|
if (a.type === b.type) return a.name.localeCompare(b.name)
|
|
return a.type === "folder" ? -1 : 1
|
|
})
|
|
|
|
return sortedItems
|
|
.map((item) => {
|
|
if (
|
|
item.type === "file" &&
|
|
!ignoredFiles.some(
|
|
(pattern) =>
|
|
item.name.endsWith(pattern.replace("*", "")) ||
|
|
item.name === pattern
|
|
)
|
|
) {
|
|
return `${prefix}├── ${item.name}`
|
|
} else if (
|
|
item.type === "folder" &&
|
|
!ignoredFolders.some((folder) => folder === item.name)
|
|
) {
|
|
const folderContent = formatFileStructure(
|
|
item.children,
|
|
`${prefix}│ `
|
|
)
|
|
return `${prefix}├── ${item.name}/\n${folderContent}`
|
|
}
|
|
return null
|
|
})
|
|
.filter(Boolean)
|
|
.join("\n")
|
|
}
|
|
|
|
export async function POST(request: Request) {
|
|
try {
|
|
const user = await currentUser()
|
|
if (!user) {
|
|
return new Response("Unauthorized", { status: 401 })
|
|
}
|
|
|
|
// Check and potentially reset monthly usage
|
|
const resetResponse = await fetch(
|
|
`${process.env.NEXT_PUBLIC_DATABASE_WORKER_URL}/api/user/check-reset`,
|
|
{
|
|
method: "POST",
|
|
headers: {
|
|
Authorization: `${process.env.NEXT_PUBLIC_WORKERS_KEY}`,
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify({ userId: user.id }),
|
|
}
|
|
)
|
|
|
|
if (!resetResponse.ok) {
|
|
console.error("Failed to check usage reset")
|
|
}
|
|
|
|
// Get user data and check tier
|
|
const dbUser = await fetch(
|
|
`${process.env.NEXT_PUBLIC_DATABASE_WORKER_URL}/api/user?id=${user.id}`,
|
|
{
|
|
headers: {
|
|
Authorization: `${process.env.NEXT_PUBLIC_WORKERS_KEY}`,
|
|
},
|
|
}
|
|
)
|
|
const userData = await dbUser.json()
|
|
|
|
// Get tier settings
|
|
const tierSettings =
|
|
TIERS[userData.tier as keyof typeof TIERS] || TIERS.FREE
|
|
if (userData.generations >= tierSettings.generations) {
|
|
return new Response(
|
|
`AI generation limit reached for your ${userData.tier || "FREE"} tier`,
|
|
{ status: 429 }
|
|
)
|
|
}
|
|
|
|
const {
|
|
messages,
|
|
context,
|
|
activeFileContent,
|
|
isEditMode,
|
|
fileName,
|
|
line,
|
|
templateType,
|
|
files,
|
|
projectName,
|
|
} = await request.json()
|
|
|
|
// Get template configuration
|
|
const templateConfig = templateConfigs[templateType]
|
|
|
|
// Create template context
|
|
const templateContext = templateConfig
|
|
? `
|
|
Project Template: ${templateConfig.name}
|
|
|
|
Current File Structure:
|
|
${files ? formatFileStructure(files) : "No files available"}
|
|
|
|
Conventions:
|
|
${templateConfig.conventions.join("\n")}
|
|
|
|
Dependencies:
|
|
${JSON.stringify(templateConfig.dependencies, null, 2)}
|
|
|
|
Scripts:
|
|
${JSON.stringify(templateConfig.scripts, null, 2)}
|
|
`
|
|
: ""
|
|
|
|
// Create system message based on mode
|
|
let systemMessage
|
|
if (isEditMode) {
|
|
systemMessage = `You are an AI code editor working in a ${templateType} project. Your task is to modify the given code based on the user's instructions. Only output the modified code, without any explanations or markdown formatting. The code should be a direct replacement for the existing code. If there is no code to modify, refer to the active file content and only output the code that is relevant to the user's instructions.
|
|
|
|
${templateContext}
|
|
|
|
File: ${fileName}
|
|
Line: ${line}
|
|
|
|
Context:
|
|
${context || "No additional context provided"}
|
|
|
|
Active File Content:
|
|
${activeFileContent}
|
|
|
|
Instructions: ${messages[0].content}
|
|
|
|
Respond only with the modified code that can directly replace the existing code.`
|
|
} else {
|
|
systemMessage = `You are an intelligent programming assistant for a ${templateType} project. Please respond to the following request concisely. When providing code:
|
|
|
|
1. Format it using triple backticks (\`\`\`) with the appropriate language identifier.
|
|
2. Always specify the complete file path in the format:
|
|
${projectName}/filepath/to/file.ext
|
|
|
|
3. If creating a new file, specify the path as:
|
|
${projectName}/filepath/to/file.ext (new file)
|
|
|
|
4. Format your code blocks as:
|
|
|
|
${projectName}/filepath/to/file.ext
|
|
\`\`\`language
|
|
code here
|
|
\`\`\`
|
|
|
|
If multiple files are involved, repeat the format for each file. Provide a clear and concise explanation along with any code snippets. Keep your response brief and to the point.
|
|
|
|
This is the project template:
|
|
${templateContext}
|
|
|
|
${context ? `Context:\n${context}\n` : ""}
|
|
${activeFileContent ? `Active File Content:\n${activeFileContent}\n` : ""}`
|
|
}
|
|
|
|
// Create stream response
|
|
const stream = await anthropic.messages.create({
|
|
model: tierSettings.model,
|
|
max_tokens: tierSettings.maxTokens,
|
|
system: systemMessage,
|
|
messages: messages.map((msg: { role: string; content: string }) => ({
|
|
role: msg.role === "human" ? "user" : "assistant",
|
|
content: msg.content,
|
|
})),
|
|
stream: true,
|
|
})
|
|
|
|
// Increment user's generation count
|
|
await fetch(
|
|
`${process.env.NEXT_PUBLIC_DATABASE_WORKER_URL}/api/user/increment-generations`,
|
|
{
|
|
method: "POST",
|
|
headers: {
|
|
Authorization: `${process.env.NEXT_PUBLIC_WORKERS_KEY}`,
|
|
"Content-Type": "application/json",
|
|
},
|
|
body: JSON.stringify({ userId: user.id }),
|
|
}
|
|
)
|
|
|
|
// Return streaming response
|
|
const encoder = new TextEncoder()
|
|
return new Response(
|
|
new ReadableStream({
|
|
async start(controller) {
|
|
for await (const chunk of stream) {
|
|
if (
|
|
chunk.type === "content_block_delta" &&
|
|
chunk.delta.type === "text_delta"
|
|
) {
|
|
controller.enqueue(encoder.encode(chunk.delta.text))
|
|
}
|
|
}
|
|
controller.close()
|
|
},
|
|
}),
|
|
{
|
|
headers: {
|
|
"Content-Type": "text/plain; charset=utf-8",
|
|
"Cache-Control": "no-cache",
|
|
Connection: "keep-alive",
|
|
},
|
|
}
|
|
)
|
|
} catch (error) {
|
|
console.error("AI generation error:", error)
|
|
return new Response(
|
|
error instanceof Error ? error.message : "Internal Server Error",
|
|
{ status: 500 }
|
|
)
|
|
}
|
|
}
|